马臻 教授/博导
发布时间:2021-05-12

马臻  博士/教授/博导

 

联系方式

复旦大学环境科学与工程系 马臻

上海市杨浦区邯郸路220号

邮政编码:200433

电子邮箱:zhenma@fudan.edu.cn

电话:021-65642997(办公室)

个人主页:https://faculty.fudan.edu.cn/mazhen/zh_CN/index/180551/list/index.htm  

 

个人简介

        马臻,1976年11月出生于上海。1994年考进复旦大学化学系。1998-2001年在复旦大学化学系师从高滋教授读研。2001年去美国加州大学河边分校化学系师从Francisco Zaera教授攻读博士,2006年进美国橡树岭国家实验室化学科学部门做博士后(导师戴胜研究员)。2009年12月加入复旦大学环境系任副研究员(校聘关键岗位引进人才,独立课题组长),2011年起为硕导,2012年起为博导。2013年12月晋升为教授。

        专长环境催化。已发表学术论文100多篇,其中7篇发表在Chemical Society Reviews、Surface Science Reports、Advanced Materials、Journal of the American Chemical Society、Nature Communications等影响因子11-33的重量级刊物。论文被引用2200多次,单篇最高引用320次,H-index为26。2009年12月进复旦工作至今,获批国家自然科学基金3项、教育部基金2项、校内资助3项。应邀担任英国皇家化学会催化书系学术专著Heterogeneous Gold Catalysts and Catalysis编辑。

        在报刊杂志发表关于科研、教育、人生哲理方面的通俗文章90多篇。科学网博客http://blog.sciencenet.cn/u/zhenma点击次数530万次,获得中国科协举办的第二届全国科学博客大赛优秀博客大奖、优秀博文大奖和入围博文纪念奖。2010年应邀担任中国科协《科技导报》“职场”栏目主持人,2015年被增补为《科技导报》编委。

        更多内容,请浏览个人主页:https://faculty.fudan.edu.cn/mazhen/zh_CN/index/180551/list/index.htm  

 

学术论文

[107] C.L. Li, Z. Ma, J.M. Chen*, X.M. Wang, X.N. Ye, L. Wang, X. Yang, H.D. Kan, D.J. Donaldson*, A. Mellouki, Evolution of Biomass Buring Smoke Particles in the Dark, Atmospheric Environment 120 (2015) 244-252.

[106] P.F. Xie, Z. Ma*, T. Meng, C.Y. Huang, C.X. Miao*, Y.H. Yue, W.M. Hua*, Z. Gao, Active Fe Species of Fe2O3/Fe-Silicalite-1 Nanowires in N2O Decomposition, Journal of Molecular Catalysis A: Chemical 409 (2015) 50-58.

[105] T. Meng, Y. Lin, Z. Ma*, Effect of the Crystal Size of Cu-ZSM-5 on the Catalytic Performance in N2O Decomposition, Materials Chemistry and Physics 163 (2015) 293-300.

[104] P.F. Xie, Y.J. Luo, Z. Ma*, C.Y. Huang, C.X. Miao*, W.M. Hua*, Y.H. Yue, Z. Gao, Catalytic Decomposition of N2O over Fe-ZSM-11 Catalysts Prepared by Different Methods: Nature of Active Fe Species, Journal of Catalysis 330 (2015) 311-322.

[103] H. Liu, Y. Lin, Z. Ma*, Rh2O3/Mesoporous MOx-Al2O3 (M = Mn, Fe, Co, Ni, Cu, Ba) Catalysts: Synthesis, Characterization, and Catalytic applications, 催化学报, in press.

[102] Y. Wang, H. Liu, P.P. Hu, Z.W. Huang, J.Y. Gao, F. Xu, Z. Ma*, X.F. Tang*, Enhancing the Catalytic Activity of Hollandite Manganese Oxide by Supporting Sub-10 nm Ceria Particles, Catalysis Letters 145 (2015) 1880-1884.

[101] T. Meng, N. Ren*, Z. Ma*, Silicalite-1@Cu-ZSM-5 Core-Shell Catalysts for N2O Decomposition, Journal of Molecular Catalysis A: Chemical 404 (2015) 233-239.

[100] H.M. Qin, X.S. Qian, T. Meng, Y. Lin, Z. Ma*, Pt/MOx/SiO2, Pt/MOx/TiO2, and Pt/MOx/Al2O3 Catalysts for CO Oxidation, Catalysts 5 (2015) 606-633.

[99] S.S. Sun, D.S. Mao*, J. Yu, Z.Q. Yang, G.Z. Lu, Z. Ma, Low-Temperature CO Oxidation on CuO/CeO2 Catalysts: the Significant Effect of Copper Precursor and Calcination Temperature, Catalysis Science & Technology 5 (2015) 3166-3181.

[98] Y. Lin, T. Meng, Z. Ma*, Catalytic Decomposition of N2O over RhOx Supported on Metal Phosphates, Journal of Industrial and Engineering Chemistry 28 (2015) 138-146.

[97] C.Y. Huang, Z. Ma*, P.F. Xie, Y.H. Yue, W.M. Hua*, Z. Gao, Hydroxyapatite-Supported Rhodium Catalysts for N2O Decomposition, Journal of Molecular Catalysis A: Chemical 400 (2015) 90-94.

[96] P.F. Xie, Y.J. Luo, Z. Ma*, L.Y. Wang, C.Y. Huang, Y.H. Yue, W.M. Hua*, Z. Gao, CoZSM-11 Catalysts for N2O Decomposition: Effect of Preparation Methods and Nature of Active Sites, Applied Catalysis B: Environmental 170 (2015) 34-42.

[95] X.J. Zhang, P.P. Zhang, H.B. Yu, Z. Ma*, S.H. Zhou*, Mesoporous KIT-6 Supported Pd-MxOy (M = Ni, Co, Fe) Catalysts with Enhanced Selectivity for p-Chloronitrobenzene Hydrogenation, Catalysis Letters 145 (2015) 784-793.

[94] H. Liu, K. Tao, H.B. Yu, C. Zhou, Z. Ma*, D.S. Mao*, S.H. Zhou*, Effect of Pretreatment Gases on the Performance of WO3/SiO2 Catalysts in the Metathesis of 1-Butene and Ethene to Propene, Comptes Rendus Chimie 18 (2015) 644-653.

[93] Z. Ma*, F. Tao*, X.L. Gu, Development of New Gold Catalysts for Removing CO from H2, in: Heterogeneous Catalysis at Nanoscale for Energy Applications, F. Tao, W.A. Schneider, P.V. Kamat (eds.), Wiley-Blackwell, New York (2015) 217-238.

[92] X.S. Qian, H.M. Qin, T. Meng, Y. Lin, Z. Ma*, Metal Phosphate-Supported Pt Catalysts for CO Oxidation, Materials 7 (2014) 8105-8130.

[91] Q.Y. Zhang, B. Li, Z. Ma, Y.G. Wang*, X. Li*, One-Step Nanocasting Synthesis of Mesostructured Magnetic Fe/γ-Fe2O3/Graphitic Carbon Composites, Journal of Alloys and Compounds 617 (2014) 713-715.

[90] P.F. Xie, L.F. Chen, Z. Ma*, C.Y. Huang, Y.H. Yue, W.M. Hua*, Y. Tang*, Z. Gao, Hydrothermal Conversion of Fe2O3/SiO2 Spheres into Fe2O3/Silicalite-1 Nanowires, Microporous and Mesoporous Materials 200 (2014) 52-60.

[89] W. Zou, P.F. Xie, W.M. Hua, Y.D. Wang, D.J. Kong, Y.H. Yue*, Z. Ma*, W.M. Yang, Z. Gao, Catalytic Decomposition of N2O over Cu-ZSM-5 Nanosheets, Journal of Molecular Catalysis A: Chemical 394 (2014) 83-88.

[88] Y. Tao, X.N. Ye*, Z. Ying, Z. Ma, J.M. Chen*, Size Distribution of Water-Soluble Inorganic Ions in Urban Aerosols in Shanghai, Atmospheric Pollution Research 5 (2014) 639-647.

[87] Y. Ren*, Z. Ma*, S. Dai, Nanosize Control on Porous β-MnO2 and Their Catalytic Activity in CO Oxidation and N2O Decomposition, Materials 7 (2014) 3547-3556.

[86] C. Lin, K. Tao, D.Y. Hua, Z. Ma*, S.H. Zhou*, Transformation of Au3M/SiO2 (M = Ni, Co, Fe) into Au-MOx/SiO2 Catalysts for the Reduction of p-Nitrophenol, Catalysis Letters 144 (2014) 1001-1008.

[85] P.F. Xie, Z. Ma*, H.B. Zhou, C.Y. Huang, Y.H. Yue, W. Shen, H.L. Xu, W.M. Hua*, Z. Gao, Catalytic Decomposition of N2O over Cu-ZSM-11 Catalysts, Microporous and Mesoporous Materials 191 (2014) 112-117.

[84] Z. Ma*, Cobalt Oxide Catalysts for Environmental Remediation, Current Catalysis 3 (2014) 15-26.

[83] L.P. Qian*, Z. Ma, Y. Ren, H.C. Shi, B. Yue, S.J. Feng, J.Z. Shen, S.H. Xie, Investigation of La Promotion Mechanism on Ni/SBA-15 Catalysts in CH4 Reforming with CO2Fuel 122 (2014) 47-53.

[82] Z. Ma*, S. Dai, Stabilizing Gold Nanoparticles by Solid Supports, in: Heterogeneous Gold Catalysts and Catalysis, Z. Ma, S. Dai (eds.), Royal Society of Chemistry, Cambridge (2014) 1-26.

[81] Z. Ma*, F. Tao*, Metal Salt-Based Gold Nanocatalysts, in: Metal Nanoparticles for Catalysis: Advances and Applications, F. Tao (ed.), Royal Society of Chemistry, Cambridge (2014) 157-171.

[80] Z. Ma*, F. Zaera, Heterogeneous Catalysis by Metals, in: Encyclopedia of Inorganic and Bioinorganic Chemistry, R.A. Scott (ed.), John Wiley & Sons, Chichester (2014) eibc0079 (16pp).

 [79] H. Liu, C. Lin, Z. Ma*, H.B. Yu*, S.H. Zhou, Gold Nanoparticles on Mesoporous SiO2-Coated Magnetic Fe3O4 Spheres: A Magnetically Separatable Catalyst with Good Thermal Stability, Molecules 18 (2013) 14258-14267.

[78] C. Lin, K. Tao, D.Y. Hua*, Z. Ma*, S.H. Zhou*, Size Effect of Gold Nanoparticles in Catalytic Reduction of p-Nitrophenol with NaBH4Molecules 18 (2013) 12609-12620.

[77] J.L. Wang, H.B. Yu, Z. Ma*, S.H. Zhou*, Enhanced Stability of CaO and/or La2O3 Promoted Pd/Al2O3 Egg-Shell Catalysts in Partial Oxidation of Methane to Syngas, Molecules 18 (2013) 8289-8297.

[76] F. Tao*, Z. Ma*, Water-Gas Shift on Gold Catalysts: Catalyst Systems and Fundamental Insights, Physical Chemistry Chemical Physics 15 (2013) 15260-15270.

[75] Y. Ren, Z. Ma, R.E. Morris, Z. Liu, F. Jiao, S. Dai, P.G. Bruce*, A Solid with a Hierarchical Tetramodal Micro-Meso-Marco Pore Size Distribution, Nature Communications 4 (2013) 2015 (7pp).

[74] Z. Ma*, Y. Ren*, Y.B. Lu, P.G. Bruce, Catalytic Decomposition of N2O on Ordered Crystalline Metal Oxides, Journal of Nanoscience and Nanotechnology 13 (2013) 5093-5103.

[73] Z. Ma*, B. Zhou, Y. Ren*, Crystalline Mesoporous Transition Metal Oxides: Hard-Templating Synthesis and Application in Environmental Catalysis, Frontiers of Environmental Science & Engineering 3 (2013) 341-355.

[72] X.N. Ye*, C. Tang, Z. Ying, J.M. Chen*, Z. Ma, L.D. Kong, X. Yang, W. Gao, F.H. Geng, Hygroscopic Growth of Urban Aerosol Particles during the 2009 Mirage-Shanghai Campaign, Atmospheric Environment 64 (2013) 263-269.

 [71] 操婧婷, 周海东*, 黄志伟, 马臻*, 唐幸福*, 铁锰氧化物对NH3低温选择性还原NO的催化活性, 复旦学报 51 (2012) 632-636 & 643.

[70] Y. Ren*, Z. Ma*, P.G. Bruce, Ordered Mesoporous NiCoMnO4: Synthesis and Application in Energy Storage and Catalytic Decomposition of N2O, Journal of Materials Chemistry 22 (2012) 15121-15127.

[69] Y. Ren, Z. Ma*, P.G. Bruce*, Ordered Mesoporous Metal Oxides: Synthesis and Applications, Chemical Society Reviews 41 (2012) 4909-4927.

[68] Z. Ma*, Y. Ren*, P.G. Bruce, Co3O4-KIT-6 Composite Catalysts: Synthesis, Characterization, and Application in Catalytic Decomposition of N2O, Journal of Nanoparticle Research 14 (2012) 874 (11pp).

[67] Y. Ren*, Z. Ma*, P.G. Bruce, Transformation of Mesoporous Cu/Cu2O into Porous Cu2O Nanowires in Ethanol, CrystEngComm 14 (2012) 2617-2620.

 [66] Y. Ren*, Z. Ma, P.G. Bruce, Ordered Mesoporous NiMn2Ox with Hematite or Spinel Structure: Synthesis and Application in Electrochemical Energy Storage and Catalytic Conversion of N2O, CrystEngComm 13 (2011) 6955-6959.

[65] X.N. Ye*, Z. Ma, J.C. Zhang, H.H. Du, J.M. Chen*, H. Chen, X. Yang, W. Gao, F.H. Geng, Important Role of Ammonia on Haze Formation in Shanghai, Environmental Research Letters 6 (2011) 024019 (5pp).

[64] Z. Ma*, S. Dai*, Design of Novel Structured Gold Nanocatalysts, ACS Catalysis 1 (2011) 805-818.

[63] Y. Ren, P.G. Bruce*, Z. Ma*, Solid-Solid Conversion of Ordered Crystalline Mesoporous Metal Oxides under Reducing Atmosphere, Journal of Materials Chemistry 21 (2011) 9312-9318.

[62] R. Mayes, P. Fulvio, Z. Ma, S. Dai*, Phosphorylated Mesoporous Carbon as a Solid-Acid Catalyst, Physical Chemistry Chemical Physics 13 (2011) 2492-2494.

[61] H.F. Yin, Z. Ma, M.F. Chi, S. Dai*, Heterostructured Catalysts Prepared by Dispersing Au@Fe2O3 Core-Shell Structures on Supports and Their Performance in CO Oxidation, Catalysis Today 160 (2011) 87-95.

[60] Z. Ma*, S. Dai*, Development of Novel Supported Gold Catalysts: A Materials Perspective, Nano Research 4 (2011) 3-32.

[59] X.N. Ye*, Z. Ma, D.W. Hu, X. Yang, J.M. Chen*, Size-Resolved Hygroscopicity of Submicrometer Urban Aerosols in Shanghai during Wintertime, Atmospheric Research 99 (2011) 353-364.

 [58] H.F. Yin, Z. Ma*, H.G. Zhu, M.F. Chi, S. Dai*, Evidence for and Mitigation of the Encapsulation of Gold Nanoparticles within SiO2 Matrix upon Calcining Au/SiO2 Catalysts at High Temperatures: Implication to Catalyst Deactivation, Applied Catalysis A: General 386 (2010) 147-156.

[57] J. Zhang, D.S. Zhao*, Z. Ma, Y.N. Wang, Phase-Boundary Photocatalytic Oxidation of Dibenzothiophene over Amphiphic Ti-MCM-41 Molecular Sieve, Catalysis Letters 138 (2010) 111-115.

[56] Z. Ma*, H.F. Yin, S. Dai*, Influence of Preparation Methods on the Performance of Metal Phosphate-Supported Gold Catalysts in CO Oxidation, Catalysis Letters 138 (2010) 40-45.

[55] E.W. Hagaman*, J. Jiao, B.H. Chen, Z. Ma, H.F. Yin, S. Dai, Surface Alumina Species on Modified Titanium Oxide: A Solid-State 27Al MAS and 3QMAS NMR Investigation of Catalyst Supports, Solid State Nuclear Magnetic Resonance 37 (2010) 82-90.

[54] H.F. Yin, Z. Ma, M.F. Chi, S. Dai*, Activation of Dodecanethiol-Capped Gold Catalysts for CO Oxidation by Treatment with KMnO4 or K2MnO4Catalysis Letters 136 (2010) 209-221.

[53] Z. Ma, H.F. Yin, S. Dai*, Performance of Au/MxOy/TiO2 Catalysts in Water-Gas Shift Reaction, Catalysis Letters 136 (2010) 83-91.

[52] J.N. Zhang, Z. Ma*, J. Jiao, H.F. Yin, W.F. Yan, E.W. Hagaman, J.H. Yu, S. Dai*, Surface Functionalization of Mesoporous Silica SBA-15 by Liquid-Phase Grafting of Zirconium Phosphate, Microporous and Mesoporous Materials 129 (2010) 200-209.

[51] Z. Ma, J.H. Yu, S. Dai*, Preparation of Inorganic Materials Using Ionic Liquids, Advanced Materials 22 (2010) 261-285.

 [50] J.N. Zhang, Z. Ma, J. Jiao, H.F. Yin, W.F. Yan, E.W. Hagaman, J.H. Yu*, S. Dai*, Layer-by-Layer Grafting of Titanium Phosphate onto Mesoporous Silica SBA-15 Surfaces: Synthesis, Characterization, and Applications, Langmuir 25 (2009) 12541-12549.

[49] J.F. Lai, Z. Ma, L. Mink, L.J.  Mueller, F. Zaera*, Influence of Peripheral Groups on the Physical and Chemical Behavior of Cinchona Alkaloids, Journal Physical Chemistry B 113 (2009) 11696-11701.

[48] M.J. Li, Z.L. Wu, Z. Ma, V. Schwartz, D.R. Mullins, S. Dai, S.H. Overbury*, CO Oxidation on Au/FePO4 Catalyst: Reaction Pathways and Nature of Au Sites, Journal of Catalysis 266 (2009) 98-105.

[47] Y. Ren, Z. Ma, L.P. Qian, S. Dai, H.Y. He, P.G. Bruce*, Ordered Crystalline Mesoporous Oxides as Catalysts for CO Oxidation, Catalysis Letters 131 (2009) 146-154.

[46] S.H. Zhou, Z. Ma, G.A. Baker, A.J. Rodinone, Q. Zhu, H.M. Luo, Z.L. Wu, S. Dai*, Self-Assembly of Metal-Oxide Nanoparticles into Hierarchically Patterned Porous Architectures Using Ionic Liquid/Oil Emulsions, Langmuir 25 (2009) 7229-7233.

[45] B. Lee*, Z. Ma, Z.T. Zhang, C. Park, S. Dai*, Influences of Synthesis Conditions and Mesoporous Structures on the Gold Nanoparticles Supported on Mesoporous Silica Hosts, Microporous and Mesoporous Materials 122 (2009) 160-167.

[44] S.H. Zhou, Z. Ma, H.F. Yin, Z.L. Wu, B. Eichhorn, S.H. Overbury, S. Dai*, Low-Temperature Solution-Phase Synthesis of NiAu Alloy Nanoparticles via Butyllithium Reduction: Influences of Synthesis Details and Application as the Precursor to Active Au-NiO/SiO2 Catalysts Through Proper Pretreatment, Journal of Physical Chemistry C 113 (2009) 5758-5765.

[43] Z. Ma, F. Zaera*, Chiral Modification of Catalytic Surfaces, in: Design of Heterogeneous Catalysts: New Approaches based on Synthesis, Characterization and Modelling, U.S. Ozkan (ed.), Wiley-VCH, Weinheim (2009) 113-140.

[42] Z. Ma, S.H. Overbury, S. Dai*, Gold Nanoparticles as Chemical Catalysts, in: Nanomaterials: Inorganic and Bioinorganic Perspectives, C.M. Lukehart, R.A. Scott (eds.), John Wiley & Sons, Chichester (2009) 247-266.

 [41] Z. Ma*, Reflections on Applied Catalysis and Fundamental Model Studies, in: Heterogeneous Catalysis Research Progress, M.B. Gunther (ed.), Nova Science Publishers, New York (2008) 235-266.

[40] Z. Ma, H.F. Yin, S.H. Overbury, S. Dai*, Metal Phosphates as a New Class of Supports for Gold Nanocatalysts, Catalysis Letters 126 (2008) 20-30.

[39] I. Lee, Z. Ma, S. Kaneko, F. Zaera*, 1-(1-Naphthyl)Ethylamine Adsorption on Platinum Surfaces: On the Mechanism of Chiral Modification in Catalysis, Journal of the American Chemical Society 130 (2008) 14597-14604.

[38] Z. Ma, S. Dai*, Materials Design of Advanced Performance Metal Catalysts, Materials Technology 23 (2008) 81-87.

[37] D.H. Wang, Z. Ma, S. Dai, J. Liu*, Z.M. Nie, M.H. Engelhard, Q.S. Huo, C.M. Wang, R. Kou, Low-Temperature Synthesis of Tunable Mesoporous Crystalline Transition Metal Oxides and Applications as Au Catalyst Supports, Journal of Physical Chemistry C 112 (2008) 13499-13509.

[36] Z. Ma, S. Brown, J.Y. Howe, S.H. Overbury, S. Dai*, Surface Modification of Au/TiO2 Catalysts by SiO2 via Atomic Layer Deposition, Journal of Physical Chemistry C 112 (2008) 9448-9457.

[35] H.F. Yin, Z. Ma, S.H. Overbury, S. Dai*, Promotion of Au(en)2Cl3-Derived Au/Fumed SiO2 by Treatment with KMnO4Journal of Physical Chemistry C 112 (2008) 8349-8358.

[34] L. Mink, Z. Ma, R.A. Olsen, J.N. James, D.S. Sholl, L.J. Mueller, F. Zaera*, The Physico-Chemical Properties of Cinchona Alkaloids Responsible for their Unique Performance in Chemical Catalysis, Topics in Catalysis 48 (2008) 120-127.

[33] Z. Ma, H.G. Zhu, W.F. Yan, S.H. Overbury, S. Dai*, Functionalized Mesoporous Materials for Gold Catalysis, in: Nanoporous Materials: Proceedings of the 5th International Symposium, A. Sayari, M. Jaroniec (eds.), World Scientific Publishing, Singapore (2008) 529-542.

[32] W.F. Yan, Z. Ma, S.M. Mahurin, J. Jiao, E.W. Hagaman, S.H. Overbury, S. Dai*, Novel Au/TiO2/Al2O3.xH2O Catalysts for CO Oxidation, Catalysis Letters 121 (2008) 209-218.

 [31] Z. Ma, I. Lee, F. Zaera*, Factors Controlling Adsorption Equilibria from Solution onto Solid Surfaces: The Uptake of Cinchona Alkaloids on Platinum Surfaces, Journal of the American Chemical Society 129 (2007) 16083-16090.

[30] Z. Ma, C.D. Liang, S.H. Overbury, S. Dai*, Gold Nanoparticles on Electroless-Deposition-Derived MnOx/C: Synthesis, Characterization, and Catalytic CO Oxidation, Journal of Catalysis 252 (2007) 119-126.

[29] H.G. Zhu, Z. Ma, S.H. Overbury, S. Dai*, Rational Design of Gold Catalysts with Enhanced Thermal Stability: Post Modification of Au/TiO2 by Amorphous SiO2 Decoration, Catalysis Letters 116 (2007) 128-135.

[28] Z. Ma, S. Brown, S.H. Overbury, S. Dai*, Au/PO43-/TiO2 and PO43-/Au/TiO2 Catalysts for CO Oxidation: Effect of Synthesis Details on Catalytic Performance, Applied Catalysis A: General 327 (2007) 226-237.

[27] Z. Ma, S.H. Overbury, S. Dai*, Au/MxOy/TiO2 Catalysts for CO Oxidation: Promotional Effect of Main-Group, Transition, and Rare-Earth Metal Oxide Additives, Journal of Molecular Catalysis A: Chemical 273 (2007) 186-197.

[26] H.G. Zhu, Z. Ma, J.C. Clark, Z.W. Pan, S.H. Overbury, S. Dai*, Low-Temperature CO Oxidation on Au/Fumed SiO2-based Catalysts Prepared from Au(en)2Cl3 Precursor, Applied Catalysis A: General 326 (2007) 89-99.

 [25] Z. Ma, F. Zaera*, Competitive Chemisorption between Pairs of Cinchona Alkaloids and Related Compounds from Solution onto Platinum Surfaces, Journal of the American Chemical Society 128 (2006) 16414-16415.

[24] Z. Ma*, Solvent Effect on CO Oxidation as a Novel Diagnosing Tool to Pin Down Low-Coverage CO at the Liquid-Solid Interface: An In Situ Infrared Study, Journal of Colloid and Interface Science 304 (2006) 419-430.

[23] Z. Ma, F. Zaera*, Organic Chemistry on Solid Surfaces, Surface Science Reports 61 (2006) 229-281.

[22] Z. Ma, F. Zaera*, Characterization of Heterogeneous Catalysts, in: Surface and Nanomolecular Catalysis, R.M. Richards (ed.), Taylor & Francis (CRC Press), Boca Raton (2006) 1-37.

 [21] Z. Ma, F. Zaera*, Heterogeneous Catalysis by Metals, in: Encyclopedia of Inorganic Chemistry (Second Edition), R.B. King (ed.), John Wiley & Sons, Chichester (2005) 1768-1784.

[20] Z. Ma, F. Zaera*, Role of the Solvent in the Adsorption-Desorption Equilibrium of Cinchona Alkaloids between Solution and a Platinum Surface: Correlations among Solvent Polarity, Cinchona Solubility, and Catalytic Performance, Journal of Physical Chemistry B 109 (2005) 406-414.

 [19] Z. Ma, F. Zaera*, In Situ Reflection-Absorption Infrared Spectroscopy at the Solid-Liquid Interface: Decomposition of Organic Molecules on Polycrystalline Platinum Substrates, Catalysis Letters 96 (2004) 5-12.

[18] Z. Ma, I. Lee, J. Kubota, F. Zaera*, In Situ Characterization of the Adsorption of Cinchona Chiral Modifiers on Platinum Surfaces, Journal of Molecular Catalysis A: Chemical 216 (2004) 199-207.

 [17] Z. Ma, J. Kubota, F. Zaera*, The Influence of Dissolved Gases on the Adsorption of Cinchonidine from Solution onto Pt Surfaces: An In Situ Infrared Study, Journal of Catalysis 219 (2003) 404-416.

[16] J. Kubota, Z. Ma, F. Zaera*, In-Situ Characterization of Adsorbates in Solid-Liquid Interfaces by Reflection-Absorption Infrared Spectroscopy, Langmuir 19 (2003) 3371-3376.

[15] 马臻, 陶泳, 高滋*, 氟里昂水解的催化剂体系, 化学世界 44 (2003) 157-160.

 [14] N. Ma, Z. Ma, Y.H. Yue, Z. Gao*, Reaction Testing of Phenol Hydroxylation and Cyclohexane Oxidation by Gas Chromatography: Influence of Residual Hydrogen Peroxide, Journal of Molecular Catalysis A: Chemical 184 (2002) 361-370.

[13] Z. Ma, Y.H. Yue, X.Y. Deng, Z. Gao*, Nanosized Anatase TiO2 as Precursor for Preparation of Sulfated Titania Catalysts, Journal of Molecular Catalysis A: Chemical 178 (2002) 97-104.

 [12] X.Y. Deng, Z. Ma, Y.H. Yue, Z. Gao*, Catalytic Decomposition of CFC-12 over Nanosized Titania-Supported Titanyl Sulfate, Journal of Catalysis 204 (2001) 200-208.

[11] 马臻, 华伟明, 高滋*, 氟里昂催化分解研究进展, 化学通报 (2001) 339-344.

2000

[10] 乐英红, 马臻, 华伟明, 高滋*, 二氧化钛介孔分子筛的合成和表征, 化学学报 58 (2000) 777-780.

[9] 马臻, 华伟明, 唐颐, 高滋*, 用以分解氟里昂-12的新型催化剂WO3/Al2O3应用化学 17 (2000) 319-321.

[8] Z. Ma, W.M. Hua, Y. Tang, Z. Gao*, Catalytic Hydrolysis of CFC-12 over Solid Acid Ti(SO4)2Chinese Chemical Letters 11 (2000) 311-314.

[7] Z. Ma, W.M. Hua, Y. Tang, Z. Gao*, A Novel CFC-12 Hydrolysis Catalyst: WO3/SnO2Chinese Chemical Letters 11 (2000) 87-88.

[6] W.M. Hua, F. Zhang, Z. Ma, Y. Tang, Z. Gao*, WO3/ZrO2 Solid Acid as a Catalyst for the Decomposition of Chlorofluorocarbon (CFC-12), Chemical Research in Chinese Universities 16 (2000) 185-187.

[5] Z. Ma, W.M. Hua, Y. Tang, Z. Gao*, Catalytic Decomposition of CFC-12 on Solid Acids SO42-/MxOy (M = Zr, Ti, Sn, Fe, Al), Chinese Journal of Chemistry 18 (2000) 341-345.

[4] Z. Ma, W.M. Hua, Y. Tang, Z. Gao*, Catalytic Decomposition of CFC-12 over Solid Acids WO3/MxOy (M = Ti, Sn, Fe), Journal of Molecular Catalysis A: Chemical 159 (2000) 335-345.

[3] W.M. Hua, F. Zhang, Z. Ma, Y. Tang, Z. Gao*, Catalytic Hydrolysis of CFC-12 over WO3/ZrO2Catalysis Letters 65 (2000) 85-89.

[2] Z. Ma, W.M. Hua, Y. Tang, Z. Gao*, Catalytic Decomposition of CFC-12 over Heteropolyacids, 催化学报 21 (2000) 3-4.

 [1] Z. Ma, W.M. Hua, Y. Tang, Z. Gao*, Catalytic Decomposition of CFC-12 over WO3/TiO2Chemistry Letters (1999) 1215-1216.

 

欢迎有志青年报考硕士、博士研究生!报考硕士时请选环境工程方向!报考博士请注意:我系实行申请-面试制,即考专业英语+面试。